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ABSTRACT
Background The emergence of precision medicine
allowed the incorporation of individual molecular data
into patient care. Indeed, DNA sequencing predicts
somatic mutations in individual patients. However, these
genetic features overlook dynamic epigenetic and
phenotypic response to therapy. Meanwhile, accurate
personal transcriptome interpretation remains an unmet
challenge. Further, N-of-1 (single-subject) efficacy trials
are increasingly pursued, but are underpowered for
molecular marker discovery.
Method ‘N-of-1-pathways’ is a global framework
relying on three principles: (i) the statistical universe is a
single patient; (ii) significance is derived from geneset/
biomodules powered by paired samples from the same
patient; and (iii) similarity between genesets/biomodules
assesses commonality and differences, within-study and
cross-studies. Thus, patient gene-level profiles are
transformed into deregulated pathways. From RNA-Seq
of 55 lung adenocarcinoma patients, N-of-1-pathways
predicts the deregulated pathways of each patient.
Results Cross-patient N-of-1-pathways obtains
comparable results with conventional genesets
enrichment analysis (GSEA) and differentially expressed
gene (DEG) enrichment, validated in three external
evaluations. Moreover, heatmap and star plots highlight
both individual and shared mechanisms ranging from
molecular to organ-systems levels (eg, DNA repair,
signaling, immune response). Patients were ranked
based on the similarity of their deregulated mechanisms
to those of an independent gold standard, generating
unsupervised clusters of diametric extreme survival
phenotypes (p=0.03).
Conclusions The N-of-1-pathways framework provides
a robust statistical and relevant biological interpretation
of individual disease-free survival that is often
overlooked in conventional cross-patient studies. It
enables mechanism-level classifiers with smaller cohorts
as well as N-of-1 studies.
Software http://lussierlab.org/publications/N-of-1-
pathways

INTRODUCTION
The adoption of precision medicine is regarded as
one of the most significant changes in healthcare
due to its ability to dramatically improve diagnosis,
prognosis, and patient treatment procedures. While
DNA polymorphisms can be ascertained as private
variants1 by using a reference genome, individua-
lized interpretation of the epigenome,

transcriptome, and proteome remains challenging.
Since purely DNA sequence-based associations to
diseases, such as those found in genome-wide asso-
ciation studies (GWAS),2 are generally insufficient
to unveil the biological underpinning mechan-
isms,3 4 it is necessary for gene expression and tran-
scriptomic profiling to bridge this mechanistic
gap.5–7 Further, 99% of individual molecular bio-
markers derived from large patient sample predic-
tors fail to be reproducible.8 Even though the
simplicity of a single marker is the correct paradigm
for Mendelian diseases, it fails in complex pheno-
types. Indeed, different proteins jointly participat-
ing in a mechanism (eg, pathway) may alternately
be deregulated in different individual patients, yet
contribute similarly to the disease pathophysiology.
A combination of modestly deregulated molecules
can lead to similar phenotypes, which suggests that
more complex models of bimolecular expression
are required than the conventional single gene/
protein marker paradigm.
In the absence of individual interpretation of the

’omics scales, clinical trials must be designed over
cohort-level features (case and control popula-
tions); however, patients with a similar clinical
history and environmental background will respond
differentially to an identical therapy. We propose
that individual transcriptome interpretation will
enable stratification of clinical trial populations or
better, novel clinical trial designs.
Single-subject designs, also known as N-of-1 clin-

ical trials, were first introduced by RA Fisher in
1935.9 This type of studies aim to extract informa-
tion from the pattern of variation of one or several
observed variables over time, derived from a single
sample (patient, cell, etc).10 Despite their long
existence, N-of-1 trials rely on time series analyses
(≥3 patients) and remain underpowered for genom-
ics studies. The advent of the increased dynamic
range and accuracy of RNA-sequencing over
expression arrays11 12 provides an unparalleled
opportunity for studying single subject transcrip-
tomes.13 While molecular biomarker discovery in
N-of-1 studies may appear unfeasible, we and
others have recently shown that highly reproducible
multi-gene signatures can be directly calculated
using mechanism-associated genesets leveraged
from transcriptomes based on expression array14–17

or RNA-Seq technologies.18 Moreover, these
geneset classifiers outperform gene-level classifiers
and provide biological context,19 20 in addition to
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computing geneset scores on each sample. However, these
approaches require at least three samples and two groups to gen-
erate p values.

N-of-1-pathways aims at uncovering deregulated mechanisms
at the single patient level, and highlighting both the individual-
ity and commonality of a patient trait. The approach consists of
(i) identifying deregulated mechanisms in a patient sample(s) by
pooling genes in genesets, (ii) comparing deregulated mechan-
isms between patients using information theory similarity, and
(iii) patient-level visualization or representation of deregulated
mechanisms for clinical interpretation (eg, diagnosis, prognosis,
and therapeutics). The first N-of-1-pathways component (i) con-
sists of selecting the most appropriate statistical analysis given
the patient samples (paired, time series, etc), with the funda-
mental principle that a single patient is the statistical universe
where genesets are sampled. We quantitatively and qualitatively
evaluated the pathways revealed in individual patients and show
comparable accuracies with conventional methods at the cohort
level.

The novelty of our approach consists of the reformulation of
the problem to identify deregulated mechanisms across patients
(‘population-based’ or ‘cohort-based’) into a statistic pertaining
to each individual patient. We hypothesize that we can transfer
these previously described geneset-level methodologies in paired
sample analyses, thus enabling N-of-1 trials with two paired
samples. To our knowledge, very few methodologies exist at the
level of a single patient that are able to provide geneset-level
information. We reference the FAIME methodology15 that we
developed in 2012 and ssGSEA (single sample GSEA),21 a
variant of genesets enrichment analysis (GSEA)22 designed for

single sample analyses, which both transform gene-level expres-
sion data into pathway-level scores. However, the transforma-
tions to geneset-level expressions require additional analyses and
statistical interpretation, while the proposed N-of-1-pathways
framework provides directly interpretable results.

Altogether, the need for precision medicine and novel N-of-1
trial designs substantiate the development of robust analytic
methods that are individual-centered with the patient as the stat-
istical universe (both the control-subject and the case-subject).
This consideration enables current advances in genomic tech-
nologies to provide individualized biological interpretations and
precise actionable deliverables.

We conducted these studies using RNA-Seq-based transcrip-
tomes of patients with lung adenocarcinoma published in The
Cancer Genome Atlas (TCGA). The classification of this type of
cancer remains a challenge as less than 20% of patients with
stages III and above survive more than 5 years.23

METHODS
Dataset and preprocessing
Four datasets dedicated to lung adenocarcinoma were used: one
exploration dataset and three external validation datasets
(table 1). The exploration dataset consisted of normalized
RSEM (RNA-Seq by Expectation Maximization) gene expres-
sion profiles for 55 paired uninvolved and tumoral lung samples
(downloaded on March 15, 2013). All measurements were log2
transformed. If several alternative transcripts referring to the
same HGNC gene name were present, only that with maximum
expression was considered for further analysis. In our efforts to
minimally transform or bias the data, we processed all the

Table 1 Dataset description

Dataset Exploration study External validation

Study I* Study II Study III

Authors NA Yap et al25 Xi et al26 Kim et al27

Source TCGA Nucleic Acids Res Nucleic Acids Res Nat Commun
Gene expression profile

Date Download March 2013 2005 2008 2013
Type RNA-Seq Microarray Microarray Beadchip
Platform Illumina RNA-Seq V.2 Affymetrix HG-U133A HuEx-1_0-st Illumina human-6 V.2.0

Genes measured 20 502 22 283 17 800 NA
Deregulated genes NA 3442† 2369 804
Provided GO terms NA 67 NA NA
Patients

Total 110 58 40 184
Normal 55‡ 9 20‡ 92‡
Tumor 55‡ 49 20‡ 92‡
Men 22 (40%) 32 (55.2%)§ 14 (35%) NA
Women 32 (58.2%) 17 (29.3%)§ 22 (55%) NA

Age
Median 66 61 69 NA
Range 42–86 38–81 42–86 NA

Disease stage

I 28 (50.9%) 25 (43.1%) 23 (57.5%) NA
II 14 (25.5%) 8 (13.8%) 5 (12.5%) NA
III 11 (20%) 14 (24.1%) 7 (17.5%) NA
IV 1 (1.8%) 2 (3.4%) 1 (2.5%) NA

*Only reported deregulated pathways were used as part of the lung adenocarcinoma signature for external validation.
†and NA indicate data not available.
‡Indicates paired samples derived from lung tumor tissues with matched normal lung tissues.
§Indicates significantly different from the exploration study (FET p≤0.05).
FET, Fisher’s exact test; GO, Gene Ontology; TCGA, The Cancer Genome Atlas.
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mRNAs transcripts regardless of their expression levels. In other
words, while mRNAs with low expression levels are routinely
filtered out in expression analysis pipelines,24 our proposed
method is inclusive of all mRNA expression. The three external
validation datasets25–27 were derived from microarray expres-
sion profiles (table 1), and only reported deregulated pathways
or differentially expressed gene lists were used in our studies.

Gene Ontology annotations of biological processes
We aggregated genes into pathway-level mechanisms using Gene
Ontology annotations of Biological Processes (GO-BP)28 29 (see
online supplementary methods). These GO annotations were
used for four types of GO enrichment analyses: GSEA,30 differ-
entially expressed gene (DEG) enrichment, ssGSEA,21 and
N-of-1-pathways analyses.

N-of-1-pathways framework
Within-patient analyses
N-of-1-pathways was performed on the exploration dataset
independently for each patient, using gene expression profiles
from two paired samples: uninvolved and tumoral lung tissues,
in the context of lung adenocarcinoma. The proposed statistical
analysis method consisted of a non-parametric paired Wilcoxon
test (Wilcoxon signed-rank test) performed within each patient
on the paired gene expression profiles restricted to a given
pathway. Wilcoxon statistics, W+ and W−, provided a direction
of deregulation for each geneset, as overall ‘up-regulated’ or
‘down-regulated’, respectively. Both false discovery rate (FDR)
and Bonferroni corrections were applied to adjust p values for
multiple comparisons. In each paired sample, only deregulated
pathways with adjusted p values with FDR ≤5% and Bonferroni
≤1% were retained for further analysis. These p values are
transformed into z scores using an inverse standard normal dis-
tribution (z score=qnorm(abs(p value/2) in R) for ulterior ana-
lyses (eg, heatmaps).

Cross-patient analyses
Each GO-BP mechanism had an associated FDR for each
patient. The GO-BP terms were then ranked according to the

total number of patients sharing a given GO term that reached
significance at FDR ≤5%. The prioritized GO-BP terms were
listed from the most commonly to the least observed in lung
adenocarcinoma patients, yet significant in at least one patient.
The N-of-1-pathways statistical analysis component is available
in R and Java at http://Lussierlab.org/publications/N-of-1-
pathways.

Theoretical results: validation using synthetic data
A synthetic geneset that contains a percentage of concordant
deregulated genes was generated using the exploration dataset.
Each point of figure 1 represents one geneset size of a simulated
pathway varying from 15 to 500 genes by increments of 5 and gen-
erated by randomly selecting ‘n’ genes among the 20 502 reported
in the exploration study. Further, a proportion of genes ‘r’ (ratio
represented in %) involved in this synthetic geneset was considered
deregulated. The expression of genes of the normal sample
included in that ratio r was then artificially increased by a twofold
change and assigned to the tumoral sample. This ratio was varied
by 5% to 100% with increments of 5%. The null hypothesis was
stated as H0: ‘The geneset is not deregulated.’ For each pair (n, r),
we applied the N-of-1-pathways statistical analysis component
1000 times in order to estimate the false negative rate (type II
error β). This resampling was repeated for 1960 combinations of
n and r. The type II errors reported in figure 1 were computed as
the number of times the truly deregulated pathway of the simula-
tion is not found deregulated (false negative) divided by 1000
(1 960 000 calculations of N-of-1-pathways calculated using the
150 teraflops, 18 000-core Beagle Cray XE6 supercomputer of
the Computation Institute located at the Argonne National
Laboratory). Since figure 1 focuses on cataloging the type II error
according to one specifically sized pathway at a time, we consid-
ered a pathway significantly found deregulated by N-of-1-
pathways when the unadjusted p value was ≤0.05.

Proxy gold standard for the internal and external
validations
Since a gold standard (GS) for lung adenocarcinoma does not
exist, we generated proxy GSs15 17 18 in order to objectively

Figure 1 Synthetic data: evaluation of the size and ratio of concordant deregulated genes within a pathway required to be found deregulated in
the N-of-1-pathways statistical analysis component. Each point represents one size of a simulated pathway generated by randomly selecting n genes
and a ratio r of the deregulated genes within the pathway. The ratio r is artificially increased by a k-fold change in a simulated pathway seeded in
the exploration dataset (k∈{1.3, 1.5, 2}). We then applied the N-of-1-pathways statistical analysis component to verify if the simulated pathway was
found deregulated with a significance threshold (type I error) chosen as an unadjusted p value of ≤0.05. For each value (n, r, k), we repeated this
procedure 1000 times in order to estimate the false negative rate (type II error β). Sim., simulated (see the ‘Theoretical results: validation using
synthetic data’ section in the Methods).
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assess the accuracy of the significantly deregulated mechanisms
identified by N-of-1-pathways (see online supplementary
methods and figures 2–5).

Information theoretic similarity
We calculated the similarity between GO-BP terms using Jiang’s
information theoretic similarity (GO-ITS)31 that ranges from 0
(no similarity) to 1 (perfect match) (figures 2–6).

Heatmap
The heatmap drawn in figure 4A was computed using the
default clustering parameters of the HeatPlus package in R (the
Euclidean metric and complete aggregation method were used).
z Scores were computed for each pathway of each individual
patient (see the ‘N-of-1-pathways framework’ section in the
Methods). These individual patient lists of p values (vectors)
were then annotated side-by-side as a matrix for creating a
heatmap of the 55 TCGA samples.

The Kaplan–Meier survival curve
The Kaplan–Meier survival curve (figure 4B) was computed
using GraphPad Prism V.6.02 software using the survival data
associated to the exploration dataset (table 1). Patients who died
of non-cancer causes in the first 12 months were excluded
(defined as ‘tumor-free’ or ‘unknown tumor recurrence status’;
exploration dataset). Three clusters of GO-BP z scores were
obtained using the Partitioning Around Medoids (PAM) cluster-
ing method (cluster package in R; see the ‘N-of-1-pathways
framework’ section in the Methods).

Principal component analysis of individual GO-BP terms
Principal component analysis (PCA) of individual GO-BP terms
(figure 4C, D) was carried out using FactoMineR (default param-
eter in R) on the exploration dataset matrix of z scores (see the
‘Heatmap’ section in the Methods).

Star plot visualization of individual patient pathways
Star plot visualization of individual patient pathways (figure 6,
table 2, and online supplementary figure S3), also known as a
spider or radar plot, was performed in R using the stars func-
tion in the default graphics package (figure 6C, and online
supplementary figure S3C). Each patient had an individual star
plot where each edge represented a particular GO-BP z score
value (see the ‘N-of-1-pathways framework’ section in the
Methods). In order to obtain a relevant representation of the
star plot surface, the GO-BP terms were ordered according to
their GO-ITS similarity and clustered using the hierarchical clus-
tering hclust method in R. In figure 6A, each hierarchical cluster
was manually curated by a biologist to a representative GO-BP
category as shown in figure 6B and table 2.

RESULTS
N-of-1-pathways successfully identifies deregulated
pathways in a synthetic simulation
The N-of-1-pathways statistical analysis component is the valid-
ation of a non-parametric statistical based method, applied to
single patient paired samples, rather than a larger multi-sample
based patient cohort. It assumes that the RNA of a single
patient is the population and the patient is the mathematical
universe. Cross-patient studies tend to generalize commonly
found pathways, whereas our unconventional approach straight-
forwardly delineates unique pathways in an individual patient.
Figure 1 confirms the obvious: genesets containing fewer genes
(n) require a larger proportion of deregulated genes (r) to be
recognized as statistically significant by N-of-1-pathways.
Moreover, N-of-1-pathways takes into account the concordance
of deregulation of the genes in the studied pathway, and thus
the results are robust given different fold changes. Of note, we
compared N-of-1-pathways with a non-classic alternative:
Fisher’s exact test (FET) enrichment of genes at certain fold
changes (see online supplementary figure S1). Results show that

Figure 2 Concordant deregulated pathways (genesets) uncovered by N-of-1-pathways, ssGSEA, differentially expressed gene (DEG) enrichment,
and genesets enrichment analysis (GSEA) methods within the exploration dataset (internal validation). To evaluate the Gene Ontology annotations
of Biological Process (GO-BP) associated terms yielded by the N-of-1-pathways method, we compared these pathways to those found by a single
sample method: ssGSEA, and two well-established cohort-based methods: differentially expressed gene (DEG) enrichment and GSEA. We then
generated precision-recall curves based on the perfect GO overlap (A), and GO semantic similarity overlap (B; GO-Information Theoretic Similarity
(GO-ITS) ≥0.7; see the ‘Information Theory Similarity’ section in the Methods). When GSEA is chosen as the proxy gold standard (see the ‘Proxy
gold standard for the internal and external validations’ section in the Methods), the N-of-1-pathways method uncovered deregulated pathways
comparable to, or better than, those of DEG enrichment analysis, with or without GO-ITS analysis, respectively. When DEG enrichment is chosen as
the proxy gold standard, N-of-1-pathways performed marginally better than GSEA (see online supplementary figure S2). Bonf, Bonferroni; FDR, false
discovery rate; PPV, positive predictive value.
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N-of-1-pathways obtains similar or better results, without
requiring to specify a threshold for the fold change, while it is
needed for the alternative.

Internal validation: N-of-1-pathways unveiled deregulated
pathways comparable to those of conventional
geneset-level methods
In order to assess the relevance of the genesets uncovered by
N-of-1-pathways, we compared its results against those com-
puted with conventional enrichment methods: GSEA and DEG
enrichment within the exploratory datasets comparing unin-
volved to tumoral lung tissues. We also compared the results with
the ssGSEA method,21 as a single-sample alternative method (see
‘ssGSEA’ in the online supplementary methods). Because
N-of-1-pathways and ssGSEA identify deregulated genesets for
each patient individually, instead of a global estimation over a
cohort, we grouped the results of the 55 patients together in
order to make the comparison. We compared the union of the
deregulated genesets over the 55 patients derived from
N-of-1-pathways (905 for Bonferroni 1% cutoff and 2662 for
FDR 5% cutoff) and ssGSEA (78 for FDR 5% cutoff) to the gen-
esets of GSEA30 and DEG enrichment. Throughout the study, we
used GO Biological Processes (GO-BP) terms as genes annotation
to genesets (also referred as pathways). We found 1659 differen-
tially expressed genes in the exploration set (480 down-regulated
and 1179 up-regulated) that we further enriched into 65 GO-BP
associated pathways using a FET (see ‘DEG enrichment’ in the
online supplementary methods) at FDR ≤5%. Second, we identi-
fied a group of 725 GO-BP terms at FDR ≤5% using GSEA (see
‘GSEA’ in the online supplementary methods). In order to evalu-
ate the effectiveness of the N-of-1-pathways statistical analysis

component, we compared the pathways uncovered at the single
patient level to those found by DEG enrichment using GSEA as a
proxy GS (figure 2). We also used an information theory semantic
similarity technique (see the ‘Information theoretic similarity’
section in the Methods) to relate the highly predicted GO-BP
terms to those of the GS, using a cutoff we have previously
derived as significant (GO-ITS ≥0.7; see the ‘Information theor-
etic similarity’ section in the Methods).

The results shown in figure 2 reveal that N-of-1-pathways
outperforms ssGSEA in both recall and precision regardless of
the chosen GS. Different ssGSEA cutoffs (FDR 25% and FDR
50%) are concordant (data not shown; N-of-1-pathways outper-
forms ssGSEA). The low accuracy of ssGSEA is unsurprising in
these conditions as it was not designed for paired samples or for
fold change as inputs (see ‘ssGSEA’ in the online supplementary
methods). Results also show that when using GSEA as a proxy
GS (figure 2A, B), N-of-1-pathways obtains more similar path-
ways to the proxy GS (see online supplementary table S4) than
when using ssGSEA or the DEG enrichment method. When
DEG enrichment serves as a proxy GS, N-of-1-pathways shows
better precision and recall than either ssGSEA or GSEA (see
online supplementary figure S2 and table S4; maximum preci-
sion ∼35%). The lower precision observed for both GSEA and
N-of-1-pathways when DEG enrichment is used as a proxy GS
is likely related to the lower number of GO-BP terms of the
latter (over-conservative GS).

External validation: biological relevance of the deregulated
mechanisms found in the context of lung adenocarcinoma
In order to further assess the accuracy of the pathways we found
deregulated in the exploration dataset, we used the three

Figure 3 Concordant deregulated pathways between exploration and external validation studies. To establish that N-of-1-pathways yielded
relevant Gene Ontology (GO) terms associated pathways, we compared the deregulated pathways to two conventional enrichment methods in three
independent lung adenocarcinoma studies (see Methods and table 1). In (A), the Venn diagram corresponds to the overlap of deregulated GO
annotations of Biological Process (GO-BP) terms associated pathways between the three external validation studies I, II and III (deregulated
pathways were directly retrieved from the ones published in study I, while they were enriched using DEG enrichment from the DE genes list
published in studies II and III, at FDR≤5%). In (B–F), the unveiled pathways of the exploration set were compared to those discovered in the
independent validation studies using either genesets enrichment analysis (GSEA) (C and E), DEG enrichment as a proxy gold standard (D and F), or
pathways reported in study I (B). Bonf., Bonferroni; FDR, false discovery rate; PPV, positive predictive value.
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independent lung adenocarcinoma studies described in table 1
to derive GSs (see the ‘Proxy gold standard for the internal and
external validations’ section in the Methods). In figure 3, the
GO-BP genesets found deregulated across patients in the explor-
ation set were compared to those found deregulated in each of
the three independent validation studies. We used a GO-ITS
>0.7 semantic similarity threshold for these curves. We con-
ducted GSEA and DEG enrichment methods on the exploration
dataset using the GO-BP terms published in study I (figure 3B)
and GO-BP terms enriched with both DEG enrichment and
GSEA in studies II and III (figure 3C–F, respectively). When
selecting GSEA results as the proxy GS, N-of-1-pathways
(Bonferroni ≤1% and FDR ≤5%) predictions from the explor-
ation set are comparable or even more similar to the proxy GS
than those of GSEA and DEG enrichment. When DEG

enrichment results are chosen as the proxy GS,
N-of-1-pathways generated comparable precision and recall to
those of GSEA. Further exploration shows that GSEA obtains
higher precision and recall than those of DEG enrichment
when the GS is derived from GSEA and vice versa when the
GS is derived from DEG enrichment. Thus, it appears that
pooled N-of-1-pathways predictions across patients are more
related to those of GSEA.

In figure 3A, a modest GO-BP pathway overlap is shown
between all three validation studies (see the Venn diagram in the
online supplementary methods). When the overlap of two
studies is compared, the commonality is modest to moderate.
This observation concurs with the reports that lung adenocar-
cinoma is a very complex and heterogeneous disease.23 Further,
these results also suggest that high heterogeneity and

Figure 4 Unveiling the individuality and commonality of the deregulated mechanisms (exploration dataset). (A) Heatmap generated by the list of z
scores for each patient (in rows) and each Gene Ontology annotation of Biological Process (GO-BP) term found significantly deregulated in at least
one of the 55 patients (in columns). Below the heatmap, three subpanels show additional details for each GO-BP term: (i) the number of patient
sharing the given pathway (patient count), (ii) the curated categorization of the GO-BP terms into 10 classes, and (iii) the similarity with the
external gold standard (GS) (see the ‘Information theoretic similarity’ section in the Methods). (B) Kaplan–Meier survival curve of the three
Partitioning Around Medoids (PAM) clusters derived from the GO-BP z score without clinical information (see ‘The Kaplan–Meier survival curve’
section in the Methods). When only the two most extreme clusters are considered, there is a statistically significant difference in survival (p=0.03),
while the difference is just a trend (p=0.09) when the three clusters are considered together. (C, D) Clustering of distinct patients according to the
two principal components (see the ‘Principal component analysis of individual GO-BPs’ section in the Methods) of individual GO-BP terms
performed on the exploration set. Two diametric extreme survival phenotypes are annotated: ‘death of disease <1 yr’ (red) and ‘disease-free survival
>5 yr’ (blue). PCA, principal component analysis. *t test, p<0.05.
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convergence of molecular mechanisms underlie both disease
development and chemoresistance.32 These results support our
initial hypothesis that patient-specific interpretations of deregu-
lated pathways are required. However, the stronger overlap
found between studies II and III suggests a confounded artifact:
an increased overlap due to the enrichment method used. We
confirmed this by comparing GSEA with DEG enrichment on
the same datasets and across datasets (data not shown).

Paired sample analysis unveils individual and shared patient
associated pathways
We assessed the biological relevance of the pathways uncovered
by N-of-1-pathways to underline unique and shared deregulated
pathways among patients, and relate these pathways to survival
outcomes. Using the z scores of each of the 905 GO-BP terms
found deregulated in at least one of the 55 patients, we con-
ducted a hierarchical clustering of patients and mechanisms
(figure 4A; see the ‘Heatmap’ section in the Methods). In add-
ition, three additional analyses are presented in figure 4A: (i)
the number of patients sharing any given pathway (patient
count), (ii) the distribution of the GO-BP terms grouped in
curated classes, and (iii) the similarity of predicted GO-BP terms
to the GS based on information theoretic similarity (see the
‘Information theoretic similarity’ section in the Methods).
Further, clusters of GO-BP terms are highlighted by a back-
ground color that underlines patterns that correlate patient
counts to GO-BP classes. The most striking cluster (figure 4A,
‘Patient count’ and ‘GO-BP classes,’ gray, rightmost) contains
nearly half of the deregulated GO-BP genesets, each shared by

less than 10 patients (20%). This cluster comprises the majority
of the GO-BP terms for metabolic process/transport signaling/
molecular pathway, tissue/organ development, and immune
response. These GO-BP classes can be attributed to the results
of the inherent property of individuals or response to therapy.
In contrast, the leftmost clusters of GO-BP terms comprise
25–49 patients each and pertain almost exclusively to DNA
repair chromatin assembly, cell division/cell cycle, and RNA pro-
cesses (figure 4A, ‘Patient count’ and ‘GO-BP classes,’ pink,
yellow, and green). This cluster relates to GO-BP classes that are
commonly found in cancer gene-level and pathway-level expres-
sion profiles. Further, these GO-BP classes are almost absent
from the gray cluster. However, the gray and blue clusters share
nearly all the immune response GO-BP terms and may infer a
patient’s response to therapy or tumor progression.

GO-ITS study provides comprehensive information on
GO-BP terms that are overlapped by the N-of-1-pathways
method and the union of the three external validation studies
used as GS (figure 4A, ‘GO-ITS analysis’). Here are few exam-
ples of related GO-BP terms at different GO-ITS thresholds:
with perfect overlap (GO-ITS=1), GO:0000087, M phase of
mitotic cell cycle shared by 49 patients; highly related
(GO-ITS=0.85), GO:0045619, regulation of lymphocyte differ-
entiation shared by two patients; somewhat related
(GO-ITS=0.7), GO:0031667, response to nutrient levels; unre-
lated (GO-ITS=0.25), GO:0032259, methylation.

In order to evaluate whether the individual mechanisms
uncovered by N-of-1-pathways were related to disease outcome,
we performed a survival analysis (see ‘The Kaplan–Meier

Figure 5 Comparison of the Gene
Ontology annotations of Biological
Process (GO-BP) terms predicted by
N-of-1-pathways in the exploration
dataset and their similarity to those of
the external gold standard
(combination of three validation
studies). (A) Global comparison of the
55 patients’ results taken together.
Overall, 92% of GO-BP terms of the
external gold standard (GS) are found
to be predicted by the N-of-1-pathways
(0.7<ITS<1 and ITS=1). Conversely,
61% of the predicted and related
GO-information theoretic similarity
(GO-ITS) overlap with the GS
(0.7<ITS<1 and ITS=1) and 10% of
GO-BP terms remain unrelated
(0.3<ITS) (see online supplementary
tables S1 and S2 which provide a
subset of results). (B) The level of
similarity of individual deregulated
mechanisms with the external GS (as a
ratio) for each patient. The two
diametric extreme prognosis
phenotypes show significant
differences in their shared GO-BP
terms with the GS (in bold) (Wilcoxon
test, p=0.03). The two diametric
extreme survival phenotypes are
annotated: ‘disease-free survival
>5 years’ (blue) and ‘death of disease
<1 yr’ (red) (figures 4C and 6C).
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survival curve’ section in the Methods). Patients were separated
into three groups using the PAM clustering method on the indi-
vidual deregulated mechanism signatures uncovered by N-of-1-
pathways (figure 4B). The results show an overall trend predict-
ing survival prognosis using individual deregulated GO-BP
terms (figure 4). Given these preliminary survival results, we

curated two diametric extreme survival phenotypes: ‘death of
disease in less than a year’ and ‘disease-free survival >5 years’,
and then performed a PCA (see the ‘Principal component ana-
lysis of individual GO-BP terms’ section in the Methods).
The component plot shows a clear clustering of the two diamet-
ric extreme prognosis phenotypes (Wilcoxon test, p<0.05)

Figure 6 N-of-1-pathways representation (star plot) of individual Gene Ontology annotations of Biological Process (GO-BPs) of diametric extreme
patients. Most significantly deregulated GO-BP terms were identified (Wilcoxon test, p<0.05; fold change >4) between the two groups of patients
with diametric extreme phenotypes (death of disease in less than 1 year and at least 5 years of disease-free survival (red and blue dots in figure 4C);
n=8 patients; figure 5B). The top 15 deregulated mechanisms between these groups were calculated using the N-of-1-pathways statistical analysis
component in the exploration dataset. (A) Hierarchical clustering of the 15 GO terms using the GO-information theoretic similarity (GO-ITS) metric
(see the Methods section). (B) Legend of the star plots, each edge corresponding to one GO-BP term. Each star reflects a single patient’s
deregulation of GO-BP terms (see the end of the first paragraph of the ‘N-of-1-pathways framework’ section in Methods). (C) Each extreme patient’s
own star plot representation of the 15 GO-BP terms. The green zone represents up-regulated pathways (given the N-of-1-pathways direction of
deregulation), while the gray zone indicates down-regulation. The non-deregulated zone (z score=0) is represented by a dotted line dividing the two
colored zones. We also applied the same representation framework to the GO-BP terms whose FAIME scores were significantly deregulated (online
supplementary figure S3).
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(figure 4C). This result suggests that N-of-1-pathways is able to
uncover deregulated GO-BP terms terms that may predict tumor
severity, and of note, these GO-BP terms are individually pre-
dicted. In addition, we show in figure 4D that the second princi-
pal component of the PCA allows the best outcome phenotype
‘disease-free survival >5 years’ to be distinguished from more
heterogeneous phenotype groups (t test, p<0.05).

Early cancer death associated to higher heterogeneity of
deregulated pathways
The main purpose of the N-of-1-pathways framework is to
unveil individual deregulated mechanisms in order to obtain a
patient-oriented representation of a disease, here applied to
lung adenocarcinoma. We showed (figure 4C, D) that the
z scores computed from N-of-1-pathways were able to dichot-
omize two diametric extreme prognosis phenotypes. Such differ-
ence could be predictable and visualized in two ways: (i) by
comparing the patient deregulated mechanisms to a GS built
from external reference studies (figure 5) and (ii) by plotting
each patient’s own z scores of related deregulated mechanisms
(figure 6).

Figure 5A shows that 92% of the GO-BP terms found by the
external GS (75% overlap with GO-ITS=1 and 17% highly
related with 0.7<GO-ITS<1) are predicted by N-of-1-
pathways. This represents common deregulated mechanisms of
the disease that are traditionally found by cohort-based
methods. However, N-of-1-pathways also reveals deregulated
mechanisms in smaller proportions of individuals and even
unique to an individual of this cohort. Hence, only 61% of the
GO-BP terms found across 55 patients are common or highly
related to the GS (GO-ITS=1 and 0.7<GO-ITS<1), while 29%
and 10% are found less related (0.3<GO-ITS<0.7) and unre-
lated to the GS, respectively (0.3<GO-ITS). Figure 5B shows
each patient’s ratio of shared mechanisms relative to the GS.
The results clearly demonstrate that disease-free survival is
increased for patients with a larger proportion of deregulated
phenotypes similar to the external GS. In other words, an
average-looking patient survives better than those very different
from the GS. As these therapies are developed for the ‘average,’
this suggests that the N-of-1-pathways may provide insight into
resistance mechanisms. Figure 6 may provide some understanding
of those mechanisms as it illustrates the 15 most significant
deregulated GO-BP terms (table 2) between the diametric

extreme survival patients identified in figure 4C. The best-
survival-outcome (BSO) patients tend to have cell cycle-related
mechanisms less up-regulated, or non-deregulated, compared to
the worst-survival-outcome (WSO) patients. Moreover, BSO
patients show that the immune response-related mechanisms are
generally down-regulated when compared to their significant
up-regulation in WSO patients. Such specific individual patient
representation allows an excellent visual of each patient’s profile
of deregulated mechanisms. We also computed the same analysis
using FAIME scores15 instead of N-of-1-pathways z scores (see
online supplementary figure S3), which shows that this type of
representation is scalable to any other scoring method at the level
of the patient.

DISCUSSION
Single patient DNA-Seq analyses of tumoral versus uninvolved
tissues can readily identify somatic mutations, which can there-
after be enriched into pathways.33 However, a simple measure
of difference or fold change between gene expressions of paired
RNA-Seq samples of a single patient cannot be interpreted with
a theoretical statistical model and have conventionally been
unreliable for identifying biological significance. On the other
hand, pooling many genes together in paired studies according
to an information model may yield significant enrichments and
further model the dynamic range of individual biological
mechanisms involved in disease pathophysiology. In the present
study, we envisioned bridging such a gap and have shown that
N-of-1-pathways is accurate (figures 2 and 3) and provides indi-
vidual patient interpretations for which conventional enrich-
ment approaches were not designed. N-of-1-pathways is a
method intended for precision medicine, requiring paired
samples from a single patient. Our method predicts patient-
specific deregulated pathways overlooked by traditional method-
ologies, as they focus on identifying common genes or pathways
across patients. Combining N-of-1 studies together is not novel,
as this has been done using meta-analyses or Bayesian-mixed
model approaches for generalizing the value of therapeutic
interventions to a population.34–36 However, the latter were not
designed to address two samples per patient or the overwhelm-
ing number of multiple comparisons arising from genomic data-
sets. In contrast, N-of-1-pathways can also be applied to
different types of ’omics datasets (eg, transcriptomes, epigen-
omes, methylomes, etc). Specifically, the principle of generating

Table 2 GO-BP terms deregulated between diametric extreme survival phenotypes in the exploration dataset

Curated classes GO ID GO description

Immune response – antigen presentation GO:0002479 Antigen processing and presentation of exogenous peptide antigen via MHC class I, TAP-dependent
GO:0042590 Antigen processing and presentation of exogenous peptide antigen via MHC class I
GO:0072474 Signal transduction involved in mitotic cell cycle G1/S checkpoint

Immune response to type I interferon GO:0034340 Response to type I interferon
GO:0071357 Cellular response to type I interferon
GO:0060337 Type I interferon-mediated signaling pathway

Immune response GO:0009615 Response to virus
Cell division/cell cycle GO:0000082 G1/S transition of mitotic cell cycle

GO:0031329 Regulation of cellular catabolic process
GO:0051325 Interphase
GO:0000087 M phase of mitotic cell cycle
GO:0007050 Cell cycle arrest
GO:0010564 Regulation of cell cycle process

DNA repair and recombination GO:0006281 DNA repair
GO:0006310 DNA recombination

This table lists the GO-BP terms presented in figure 6 along with their curated classes and complete GO description.
GO-BP, Gene Ontology annotations of Biological Process.
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the statistical power from multiple genes (or molecules of life)—
in each geneset of a pair of samples—can be extended to methyla-
tions, or related modifications of histone or DNA binding proteins,
etc. These could allow for the inclusion of novel patient-centered
’omics reports in electronic medical records for clinical inter-
pretation (figure 6).

We and others have previously developed a single sample
scoring method based on genesets that outperformed gene
expression classification.14–17 However, these scoring systems are
designed for interpretation of a single patient against a reference
standard or a geneset-level classifier previously calculated from a
cohort. In contrast, the framework of N-of-1-pathways is applic-
able to clinical and experimental designs with as few as two
samples from the same subject (eg, treated vs non-treated cell
lines). We completed a series of shRNA conditional knock-down
experiments of an alternative splicing protein, PTBP1, with
paired samples of ovarian or breast cancer cell lines and con-
firmed the biological significance of N-of-1-pathways predic-
tions.37 In this study, we also compared N-of-1-pathways with
ssGSEA, an alternative single sample method, and showed that
N-of-1-pathways results were more proximate with those of
GSEA and DEG enrichment (figure 3) when all individual scores
were pooled together than with ssGSEA as single level results
(figure 2). This supports the ability of N-of-1-pathways to recap-
itulate common signatures of conventional geneset methods
although designed for paired data. Moreover, N-of-1-pathways
predictions can be scaled down to a single geneset, which pro-
vides opportunities to target limited number of genes of a given
deregulated pathway for a qPCR analysis, while ssGSEA requires
the whole background of genes for the same evaluation.

Although N-of-1-pathways performed similarly to GSEA and
DEG enrichment (figure 3), we are planning to conduct a
number of studies to quantify the gain of accuracy of this new
method. We are considering a resampling by decreasing subsets
of patients to estimate the threshold for which N-of-1-pathways
becomes no more accurate than alternate methods when con-
ducted over the full dataset of 55 patients. We have already
undertaken empirical studies (10 000 permutations, data not
shown) to calculate the p value associated to a GO-BP pathway
identified across patients, using the N-of-1-pathways statistical
analysis component. This approach should yield better ranking
of GO terms than the simple count of number of patients used
in this current study. We also plan to incorporate FAIME scores
or fold change calculation to provide a more accurate measure-
ment of deregulated pathways. Moreover, we are considering
using uncurated biomodules to generate genesets required for
N-of-1-pathways from co-expression patterns or yeast two-
hybrid protein interactions. We have previously shown improve-
ment of geneset scoring methods with unbiased biomodules (eg,
co-expression networks) rather than curated genesets.16 The
N-of-1-pathways framework is designed to utilize the most
appropriate statistics to compare paired samples. In the current
application, use of the Wilcoxon signed-rank test identified
deregulated pathways from genesets where genes were preferen-
tially deregulated in one direction (‘up vs down’ or ‘down vs
up’). This type of statistics may produce false negatives on gene-
sets containing genes with opposite expression patterns. Of
note, the enriched GO terms of the proxy GSs were designed
with up-regulated genes separately from the down-regulated
genes. In future studies, we will develop statistics that enable the
identification of genes deregulated in both directions and attri-
bute a gene weight to score significant pathways. The latter may
provide insight on biological mechanisms at play in response to
therapy and survival.

Finally, with the abundance of microarray datasets, an analysis
of the accuracy might be valuable for obtaining a signal in micro-
arrays by re-analyzing well-understood legacy datasets with the
intention of unveiling individual differences overlooked by cross-
patient studies. TCGA also contains paired DNA-sequencing of
uninvolved and tumoral lung tissues in the context of lung
adenocarcinoma disease for the same patients than the RNA-Seq
exploration dataset, from which somatic mutations can readily be
extracted. We plan to improve analytical techniques for N-of-1
genomic studies through the use of additional sources of external
knowledge (eg, eQTL) and paired samples from other genomic
scales for predicting individualized response to therapy. Indeed,
the new pathologic classification of lung cancer identifies key
mutations relevant to chemoresistance and disease progression
such as EGFR, ALK, TTF-1, p53, and KRAS.23 38 39

CONCLUSION
In this study, we validated a novel framework, N-of-1-pathways,
for unveiling deregulated pathways from only two paired
samples. In classic comparative study analyses, many samples of
different categories are required for achieving sufficient statis-
tical power to draw conclusions at the level of the studied popu-
lation. Here the power is available for a single patient with as
few as two samples, yet population-based generalizations can be
conducted in a deceptively simple way: by adding significant
patient results together.

The N-of-1-pathways framework relies on three main compo-
nents: single-patient pathway statistics, biological modules, and
information theory similarity. First, the statistical universe is a
single patient or a set of paired samples, providing statistical evi-
dence where other methods were not designed to operate.
Second, mechanisms unveiled within paired samples can be
measured from genesets. Third, the ‘naive’ exact overlap of the
mechanism’s coded terms is insufficient to comprehensively
assess commonality or differences between patients, and here
we validate an information theoretic similarity approach.

We compared the results of N-of-1-pathways with two well-
known methods: GSEA and DEG enrichment, which are
current state-of-the-art techniques for identifying deregulated
pathways from multiple samples. The results show that
N-of-1-pathways could be effectively used to identify deregu-
lated pathways at the patient level.

Our results show that about 20% of pathways deregulated in
individual patients were overlooked in three previous well-
powered studies; yet, some were shared by a number of patients
when measured individually. This highlights the variability of
individual patients who can be further stratified into subgroups
at the molecular level, a missed opportunity of studies relying
on mechanisms ‘common’ to a large proportion of patients. In
comparison, the N-of-1-pathways approach unveils a significant
number of mechanisms shared by fewer patients and provides
the opportunity to tailor precision and molecular therapies to
individual deregulation. Indeed, precision medicine is a nascent
field lacking in robust quantitative and qualitative methodolo-
gies, particularly at the level of individualized transcriptome
interpretation for predicting personal response to therapy.
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